モバイル空間統計(リアルタイム版)は、特定エリアの直近の人口統計も示す。人が多いところでは乗車需要も多いという強い相関関係があるので、これだけでも有用だが、もっと予測精度を上げるには別のデータも必要だ。
例えば乗降データ、天気の状況、周辺施設の情報エリア周辺の人の移動状況などが需要変動に大きな関係がある。駅周辺では人口が増えればすぐに乗車数が増えるが、商業施設などの周辺では人口増加の数時間後(買い物や観劇などの後)に乗車数が増えるというように、エリアごとの特長もある。このような細かい条件を予測に加味することは人手では難しい。
そこで1つの手法としてディープラーニングを採用した。囲碁や将棋、チェスなどでプロの人間を打ち負かすような結果を出した機械学習技術の1つだ。画像認識、音声認識など近年のAIサービスのほとんどが採用する。
さまざまな時系列データと統計データを入力して自動的に学習させると、やがて精度の高い予測を実現する予測モデルが出来上がる。タクシー乗車需要はさまざまな条件の掛けあわせで増減する。人間には処理不可能なほど多様な要素の組み合わせから、目的に沿ってより適切な解をもたらす。
実際にはそう簡単ではなく、AIタクシー開発者がデータの学習を積み重ねながら数カ月をかけてチューニングするうちに徐々に精度が上がっていった。
AI技術がもう1つ使われる。時系列のデータを基に予測を組み立てる多変量自己回帰モデルだ。例えばターミナル駅の人の移動など、多くのデータから規則性が見いだせるような場合に精度高く予測できる。この手法を使って人間が処理を設計し、データから予測モデルを作成する仕組みにした。
商用サービスではディープラーニングによる予測結果と多変量自己回帰モデルの予想結果とで精度の高い方を利用する構成にした。ハイブリッドな予測方法が好結果をもたらした。
AIタクシーが、慢性的な人手不足に悩むタクシー業界の業務効率化と売上増加、無駄を省いたコスト最適化に役立つことは明らかだ。次のようなポイントにも注目できる。
こうした利点は、裏返せばタクシー業界をはじめとする人や車、物品の移動にかかわる業界の課題だ。リアルタイムな動態の把握や予測は、業務効率化や働き方改革の鍵にもなる。
例えばコンサート会場やイベント会場での混雑緩和、道路の渋滞緩和、トラックやバス運行の合理化、最適化、排ガス軽減など同技術が応用可能な領域は多い。AIタクシーをはじめとするリアルタイム移動需要予測技術が、ますます発展することを期待したい。
※「AIタクシー」「モバイル空間統計」はNTTドコモの登録商標。
Copyright © ITmedia, Inc. All Rights Reserved.
製品カタログや技術資料、導入事例など、IT導入の課題解決に役立つ資料を簡単に入手できます。